Maximum & Minimum Value Leave a Comment / Math / By Science++ Content- Maximum and Minimum Value of Quadratic function f(x) :Vertex of parabola :( y+D/4a) = a (x +b/2a)2 ….(1) let y + D/4a = Y & x + b/2a = X ∴ Y = aX2Y=0 & X=0y + D/4a=0 & x + b/2a=0y = -D/4a x = -b/2aVetex = ( -b/2a , -D/4a)Case1 : a > 0 then f(x) has minimum value at x=-b/2af(-b/2a) = -D/4a———————————————————————————-Case2: a > 0 then f(x) has maximum value at x=-b/2af(-b/2a) = -D/4a Maximum and Minimum Value of Quadratic function f(x) :Vertex of parabola :( y+D/4a) = a (x +b/2a)2 ….(1) let y + D/4a = Y & x + b/2a = X ∴ Y = aX2Y=0 & X=0y + D/4a=0 & x + b/2a=0y = -D/4a x = -b/2aVetex = ( -b/2a , -D/4a)Case1 : a > 0 then f(x) has minimum value at x=-b/2af(-b/2a) = -D/4a ———————————————————————————-Case2: a > 0 then f(x) has maximum value at x=-b/2af(-b/2a) = -D/4a